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-W-propese 'an approximate Newton method for solving tht coupled nonlinear system.G(ti, t) = 0
and N(u, t) = 0 where u E R , t E R", G : R" x R'" R- R0 and N : R" x R' -. Rm. The method
involves applying the basic iteration S of a general solver for the equation G(u, t) = 0 with t fixed.
It is therefore well-suited for problems for which such a solver already exists or can be implemented
more efficiently than a solver for the coupled system. We dedveconditions for S under which the
method is locally convergent. Basically, if S is sufficiently contractive for G, then convergence for
the coupled system is guaranteed. Otherwise, we show how to construct a S from S for which
convergence is assured. These results are applied to continuation methods where N represents a
pseudo-arclength condition. W show that under certain conditions the algorithm converges if S
is convergent for G.
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1. latroduetlo;
In this paper, we are concerned with computational algorithms for solving coupled nonlinear

systemsoftheform:
(Z) - (G(u, t)\= 0

C ) N(u, t)) -

where z a (u,t),u e R",t E R",G : R" x R"' @- R' and N : R* x R'" ,- R". More general
coupled systems can always be casted into this form. We shall assume that a solution z" exists
and that it is regular, i.e. the Jacobian

J= v

is nonsingular at z*. t
Since z' is a regular solution of C(z) = 0, many conventional iterative algorithms can be

applied to solve for z° . However, this approach may fail to exploit certain structures which are
inherent in the operators G and N but which do not exist in C. Such structures could be symmetry,
positive definiteness, separability, sparsity and bandedness. Exploiting these structures may be
crucial for the overall efficiency of the computational algorithm, especially for large problems.

In addition to these general properties, one may have special knowledge of G and N, perhaps
already implemented in easily available efficient solvers, whereas such solvers may not exist for
the coupled system. Situations like this occur quite often in applications to continuation methods,
optimization problems and coupled partial differential equations. In continuation methods, G may
represent a nonlinear system in u with dependence on some parameters t and N may represent an
rclength condition constructed to follow the solution manifolds. If G represents a discretization

of a well studied mathematical model (e.g. the Navier-Stokes equations with t being the Reynold's
number), one may have special solvers for G (for fixed t) whereas these special techniques cannot be
easily adapted to solve the coupled system 141. Similar situations occur in constrained optimization
problems, where t may represent the Lagrange multipliers and N the constraints. In coupled partial
differential equations, for example those that arise in semiconductor modelling [8], G (with t fixed)
may be some standard differential operator for which special efficient solvers exist whereas no such
efficient solvers exist for the coupled system.

For the above reasons, in this paper we shall consider a special class of algorithms for solving
the coupled system which makes use of a general solver (presumably efficient) for G, for fixed t.
We shall assume that this solver is available in the form of a fixed point iteration operator S, which
takes an approximate solution ui and produce the next iterate ui+n = S(ui, t). Since most solvers
for nonlinear systems are iterative in nature, it should be relatively easy to extract S from them.

We emphaize that it may not be straightforward to incorporate such a solver S in most
conventional methods for solving the coupled system. The most obvious approach is to use S in
conjunction with a block relaxation method in which S is used to solve for u as a solution to the
equation G(u, t) = 0 with t fixed. However, such an approach will most likely fail if the JacobianJ of the coupled system is not positive definite or diagonally dominant near the solution, which

is usually the case if the coupling between the two equations is strong. Another classical method
which has much better local convergence properties is Newton's method. However, a linear system
with J must be solved at each step. This requires some approximations to G. and G, which may
not be readily available (in S or otherwise). Moreover, while it is possible to exploit a solver for
G/. when solving for the linear system with J 15, 121, it is not obvious how to exploit the special

solver 5 if it does not use the Jacobian G. explicitly.

tThroughout this paper, subscripts in u. I ad x demote partial diferentiation.
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Thus it seems desirable to have a class of algorithms for solving the coupled system which
can be proven to be convergent, at least locally, under rather general conditions but which can
also effectively exploit a special solver S for G. Such an algorithm would, for example, allow
continuation techniques to be easily applied to an application area in a modular fashion and with
the efficiency built into special solvers specifically designed for the application. It would also allow
constraints to be added to a special solver for a class of unconstrained optimization problems
without a sacrifice in computational efficiency.

In Section 2, we present such an algorithm which is based on Newton's method for solving
the coupled system C(z) = 0. The basic idea is to use S to approximately solve the linear systems
involving J at each step of Newton's method. If S represents one step of Newton's method for
the equation G(u,t) = 0 with t fixed, then the algorithm reduces exactly to Newton's method
for the coupled system, with a block elimination algorithm [5, 121 applied to solve the systems
with J. If S implements any other convergent method for G(u, t) = 0, then the linear systems
for J are solved only approximately. In this way, the algorithm can be viewed as an inexact
Newton method [71, except that the size of the residual is not directly controlled. In Section 3,
we analyze the local convergence properties of this algorithm. Basically, we prove that if p(S,) or
11S.11 is sufficiently smaller than 1, then the algorithm is locally convergent. In other words, if S
implements a reasonably fast convergent method for G, then the algorithm will converge locally
for C. If p(S.) or 11S.11 is not small enough, we show how to construct a S from S for which
convergence is assured. In Section 4, applications to arclength continuation methods are discussed.
We show that under rather mild conditions the algorithm is locally convergent if S is convergent
for G. Some concluding remarks are given in Section 5.

2. Algorithm
At each step of Newton's method applied to C(z) = 0, the following linear system

has to be solved for the changes (6u, 6t) in the Newton iterates. In order to exploit a solver for G.
(assuming it is available), the above system is often solved by the following

Block Elminatlon Algorithm-" [121

1. Solve G.i = -G for w, where w E R .

2. Solve Gv - Gt for v, where v E R" x R".
3. Solve (Nj - N~v)6t = -(N + New) for 6t.

4. Compute 6u w a' - v6t.

Note that m + 1 linear systems involving G, have to be solved. Now assume that we have a
solver for G(u, 9) = 0 in the form of a fixed point iteration a - S(u, 9) with t fixed. For example,
Newton's method for G would correspond to

$Nmom v U - G;'(U, t)G(U, t).

The idea in the new algorithm is to use S to approximately solve fo w and v in Steps (1) and (2)

bU in the Block Elimination Algorithm. Since the vector w is precisely the change in the iterate u in
one step of Newton's method applied to G(e, a) -0, it seems natural to approximate w' by

S' - S(uat,) -ti , ~~]
S..

-P.

9~]
S
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where vi and ti are the current iterates. The situation for approximating v is slightly more
complicated since it does not directly correspond to an iteration based on G(u, t) = 0. However,
note that by differentiating the equation G(u, t) = 0 with respect to t we obtain

Gauu+G =0

and thus at convergence
V Z= -Us.

Since at convergence u = S(u, t), it follows by differentiation that

%% us = S.8,+ so

at z. Thus if S is sufficiently contractive for G (for example if IS, is sufficiently small), then
it seems reasonable to approximate v by -Se. In particular, if S =fi SO e " then S, = 0 and this
approximation is exact. If S can easily be differentiated with respect to £ (for example if S is linear
in t), then Se can be computed without too much difficulty. In general, Sj can be approximated
by finite differencing S with respect to t. We summarize the above in the following:

Algorithm ANM (Approsimate Newton Method): Given an initial guess (to, to), iterate the
following steps until convergence:

1. Compute w = S(ta, t,) - wu.
2. Forj- 1, m compute

, s(u, + , ei) - S(u, ,)

where vj denotes the j-th column of v, ei denotes a small finite difference interval and ej
denotes the i-th unit vector.

3. Solve the following m by m system for d:
(N,(u - N t, )v)d = t,) + N.(u, ti)w)

4. Compute ti+ = ti + d.

6. Compute u+1 = tad w - yd.

Note that similar to the Block Elimination Algorithm, m+ 1 calls of S are needed per iteration.
Moreover, for this algorithm to be well-defined, (N, - N.v) - t must exist at all the iterates so that
the linear system for d can be solved. For S = SN" ' , we shall show that (N - Nv)- l does
exist at z" if G. is nonsingula there. For it follows from a LU-factorization of J with C. as pivot
that

det(J) - det(G.)det(Ne - N.G;-Gj);

and since at ?" det(J) ft 0 and v - -a - G;tG,, it follows that det((Nt - N.v)) ff 0 at z'.
Therefore, for a general, sufficiently contractive solver S (so that v o -u), it is reasonable to
assume that (N, - Nv)-t exists locally around the solution s'.

L Covergeme
In this section, we analyse the local convergence of Algorithm ANM. For this purpose, we

view the algorithm a a fixed point iteration F:

-F(xz4.
'., -
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We note that the necessary and sufficient condition for convergence is p(F,) < I at the solution z"
and a sufficient condition is IFsI < 1 in some norm. We shall denote the first n components of F
by F1 and the last m components by F'. Since all relevant quantities in this local analysis are to
be evaluated at the solution z1, from now on we shall drop all the arguments. We also note that
at ', we have w = 0 and d = 0.

To simplify the analysis, we shall write

V= -5t+(

where t, with 11,l1 = 0{ max I(Al),

represents the truncation error in the finite difference approximation of v to -Se.
In order to evaluate F,, we need to compute F., Fgl, F.2 and &2. From the definition of

Algorithm ANM, it follows that, at z',

F.  1+ w. - (vd). = I+ w,. -vd.,
4: =W - (vd)s = we - vdt,
F. 2 d.,

F'- I+d,.

Therefore, we need to evaluate v.,wg,d. and dt at '. From the definition of w in Step (1) of
Algorithm ANM, it is easily seen that

W,. = S, - I,
We = St.

After some manipulations, it can also be verified from the definition of d in Step (3) of Algorithm
ANM that, at the solution zo,

d, = -(Nt - Nv) - 1N.S,

d,= -1- (No - N.v)-N.t.

Combining these results gives the following:

Lamna Ui. At the solution z*,

s PS. PCF = (-(Nj- N.v) 'N.S. -(N,.v)-'Nv

where P w I+ v(Ne - N.v)- N..

From Lemma 3.1 it follows directly that if I1S,11 and IiII are sufficiently small in some norm,
then I1F,11 < I and Algorithm ANM converges locally. If St is directly computable, then t = 0. If
finite differencing is used and if the variables are scaled appropriately, then e can usually be chosen
to be of the order of the square root of the machine precision 1101 which in most cases is much less
than 1. Therefore, to simplify the analysis, we shall take c 0 from now on. This assumption
should have a relatively minor effect on the local convergence.

With this assumption, we have

F (-(N,- N.v)-'N.S.

Since p(Fs) " p(PS.), it immediately follows that

. ,: .... ,.. . , . ... . . ... . . . .. .. ... . .,.. .. .. . .. ... . . . . .. ... . . . .. . . . .
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Theorem &. Algorithm ANM converges iff p(PS,) < 1.
Specifically, if S . SNm'Su, we have S. = 0 and therefore the quadratic convergence of

Newton's method for the coupled system is recovered. On the other hand, it would be nice to
determine sufficient conditions on the contractivity of S for Algorithm ANM to be convergent.

First of all, we have the following general sufficient condition:

Theorem 2. Algorithm ANM converges if IS.II < g, in any vector induced norm.

Proos. Follows from p(PS,) < IIPS, II < IIPII IlS, I.
I

Since in general p(Sj) 5 IIS,,I1, it is desirable to have les stringent conditions on p(S) instead.
Unfortunately, this is possible only if P and S. belong to special classes of matrices.

am 3.2. If S. is normal, then p(PS*) _ IIPII2p(S.). If in addition, P is normal, then
A(PS,) <_

Prof!. Follows easily from the fact for any matrix A, p(A) < IAIl2 with equality if A is normal.
I

Lema 3.. f P and S. are simultaneously diagonalizable, and the corresponding eigenvalues of
P and S. are vr and ui , then p(PS.) = max,. [1pril.

These two lemmas give the following sufficient conditions on p(S.) for the convergence of
Algorithm ANM:
Theorem 3.3.

f S. is normal, then Algorithm A NM converges ifp(Sv) < np&" If P and S. are both normal,

or are simultaneously diagonalizsable, then Algorithm ANM converges if p(S.) < - .

We note that in general p(S.) < 1 is neither a necessary nor a sufficient condition for the
convergence of Algorithm ANM. In other words, it could happen (and we have carried out numerical
experiments confirming it) that a non-contractive S for G can lead to a convergent Algorithm ANM.
This can happen, for example, if P and S. are simultaneously diagonalizable and P has a small
eigenvalue corresponding to a large eigenvalue of S. (or vice versa), so that the product is smaller
than 1. In this way, P can be thought of as a projection (an oblique one in general) operator. In
practice, however, it would only be prudent to employ a contractive S with P(S.) < 1.

Theorems 3.2 and 3.3 give upper bounds on p(S,) and I1S.11 for the convergence of Algorithm
ANM. Based on the assumption that (NI - N~v) and G. are nonsingular at all the iterates, it
follows that p(P) and IIPII are bounded. Therefore, the upper bounds for p(S.) and IIS.11 in
Theorems 3.2 and 3.3 are bounded away from zero. The size of p(P) and IIPiI depends on both N
and S and must be estimated for the particular application.

If for a particular S, S. does not satisfy any of these bounds, then convergence is not guaran-
teed by the above theorems. However, the following general technique can be systematically used
to overcome the problem, provided 11S.11 < 1 in some norm. Define a modified iteration operator

9ty

9(ut) = s(s ... S(S(u, ),t), ... ,t), t).

In other words, S is obtained by iterating S k times with t fixed. It follows that

so

.A..5.& .~ ..E~p.. = s, '. . ~ .
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Therefore, we have 0s( -< "1: I I<Is.l IS."5 ll'.

If 11S,11 < 1, then a large enough value of k can always be chosen so that p(S) or fIS.jI satisfies
one of the bounds in Theorems 3.3 and 3.2. For efficiency reasons, k should be chosen to be the
smallest integer such that the largest applicable bound is satisfied.

4. Arclegth Contlnuatlon

In this section, we apply the results of the last section to an important application area. In
arclength continuation methods [2, 9, 12, 141, G represents a system of parameterized nonlinear
equations, with u playing the role of the main variable, t the parameters and N represents certain
auxilliary conditions. We shall restrict our attention to path-following continuation where m = 1,
although the algorithm and theory developed in Sections 2 and 3 apply to other related problems
as well (e.g. augmented systems defining singular points [1, 3, 11, 13, 151).

The function N is usually defined in terms of the unit tangent (i, i) at a solution (u, t) which
is the solution of: Gi +0,1=0

+= 1.

We shall concentrate on two typical N's that are widely used in the literature:
Nt = .4( - uo) + io - to) - 6.,

N - to ) 
I

where (u0, to) is a known solution on the solution curve, 68 is a continuation step and ej is the j-th
unit vector. For more details the reader is referred to (121 for N' and 1141 for N2 .

We shall first estimate p(P) and IIPII for these two N's and then apply the results of the last
section. In particular, we would like to determine the conditions under which Algorithm ANM
converges if S is convergent for G, i.e if p(S.) < 1

First, we need the following elementary result.

p(P) = max(l, IN o _ 6

Proof. Since m = 1, P is a rank one perturbation of I and thus P has n - 1 eigenvalues equal to
I and one eigenvlue equal to 1 + N9.

U

For N1 , we have N, -o and N, - io. As discussed before, if S is sufficiently contractive,
then t

t

It follows that

'(P) = max(l, I.ot D .

If ioi has the same sip as 4 , which would be the case if (uo, to) and (u, 9) are not on opposite
g sides of P' rning point, then we have p(P) < 1. If toi and 6tzis have opposite signs, then p(P) > 1.

She arsumption that o is nousinular ensures that i 0 0.

e.

U..,-,. . . .. .' - ,.. .. . .... . . ... ,.,..-. .: .-. .. - -_- . - . . ......-. .... ,.. .. ,,,- .. . - , ,.
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But note that the term i0i + jou is the cosine of the angle 0 between the unit tangents at (u, t)
and at (no, to), which is usually kept appreciably above zero by the continuation method. Since
ioI < 1 and jti < 1, we have in this case p(P) <5 In particular, as 6s -. O, -. 0 and hence

p(P) < 1. Moreover, if S is sufficiently contractive, then v tends to a scalar multiple of N, and
this implies that P tends to being a normal matrix. As for IIPiI, we have

P= I-• 6
toi + .o'u

and therefore
," IlPP <- 1 + --- ' p = 2, oo.

As 6. -- 0, IIPII, - 2 for p = 2, oo. If P is normal, we have the tighter bound IIP112 = P(P) < 1.
Combining the above estimates of p(P) and 1IPiI with the results of Section 3, we obtain the
following sufficient conditions for the convergence of Algorithm ANM:
Theorem 4.1. For N1, as 6. --. 0, Algorithm ANM converges locally if any one of the following

conditions holds:

1. 11S.11, < 1, for p = 2 or oo.
2. IIS.ll1 < 1, if P is normal.
3. p(S.) < 1, if S. is normal.

-" 4. p(S,) < 1, it P and S, are either both normal or simultaneously diagonalizable.

For N2 we have (N,, NJ-e. If j _n then N, = 0 and we have p(P) = 1. If = + I then
N, = 0 and we also have p(P) I. Therefore in any case, p(P) = 1. However, P is not normal
unless v is a multiple of ej. Next we shall estimate IIPII. First note that if j = n + 1 then P = I

- and hence IiPIi = 1 in any vector induced norm. If 1 <j <_ n, then

p = ! I i,'

where (v), denotes the i-th component of the vector v. In practice, the index j is usually chosen
so that l(v)il = max,<i5. l(v)j and hence IIPl1o < 2 and IIPII < 1 + V/f. Combining these
estimates of p(P) and IiPIi with the results of Section 3 gives the following sufficient conditions for
the convergence of Algorithm ANM:

Theorem 4.2. For M, assuming that the index j is chosen such that l(vj = max1 <,<,. 1(v),1,
Algorithm ANM converges if any one of the following conditions holds:
I. IIS-1100 < 1'-

* ~ ~ 2 lJIS4I112 i

3. I1S1l2 < 1, if P is normal.
4. p(S,) < - if S. is normal.

5. p(S,) < 1, if P and S. are either both normal or simultaneously diagonalizable.

Many of the conditions in Theorems 4.1 and 4.2 are very conservative. For N1, if S. is normal
and reasonably contractive, then it is most likely that the condition p(S.) < 1 is sufficient because
P should be close to being normal. For N2 , the estimates for IIPI are especially conservative if v
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has a particularly large component. In fact, if is equal to ei, then P is normal and IIPiIp = 1
for p = 2 or oo, and the bounds in Theorem 4.2 all become 1. In particular, under these conditions,
we have that, for both N' and N2, the condition p(S.) < 1 is sufficient for the convergence of
Algorithm ANM provided So is normal. This is a very satisfactory result because it mewis that in
practice Algorithm ANM converges if S is convergent for G. Therefore it can be applied reliably
to a large class of problems with most solvers S for these continuation methods, especially in
conjunction with the technique for constructing S. The algorithm has been successfully applied to
a limited number of small continuation problems.

6. Concluding Remarks
In this paper, we have proposed a general algorithm for solving a general class of coupled

nonlinear systems. It is especially suitable for problems for which efficient solvers exist for part of
the system but not for the whole. The algorithm can be applied in a modular fashion with calls to
these solvers and fully exploits the efficiency built into them. The local convergence analysis shows
that if the solvers are sufficiently contractive, then the algorithm converges locally. A general
technique enables one to construct a modified S that ensures convergence. For two important
arclength continuation methods, we show that under mild conditions, the algorithm converges if
the solver is convergent.

It is known that the Block Elimination Algorithm may be unstable near a solution where G. is
singular [5, 41. If G;1 is used explicitly in S, then instability is to be expected for Algorithm ANM
as well. However, it may be possible to adapt deflation techniques developed in [5, 61 for the Block
Elimination Algorithm to Algorithm ANM. In any case, for problems in which S is well-behaved,
Algorithm ANM should not encounter any stability problem.

AI
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